100 Things Arizona Fans Should Know & Do Before They Die (100 Things...Fans Should Know)

100 Things Arizona Fans Should Know & Do Before They Die (100 Things...Fans Should Know)

Matematika 3. Jika f(x) = 3x+12 dan g(x) = 2x-3 maka (fog) -¹=
a. (fog) -¹ = x-3/6
b. (fog) -¹ = x-9/6
c. (fog) -¹ = x-9/3
d. (fog) -¹ = x-3/3
e. (fog) -¹ = x+9/6

3. Jika f(x) = 3x+12 dan g(x) = 2x-3 maka (fog) -¹=
a. (fog) -¹ = x-3/6
b. (fog) -¹ = x-9/6
c. (fog) -¹ = x-9/3
d. (fog) -¹ = x-3/3
e. (fog) -¹ = x+9/6

[tex] \mathbb \color{aqua} \underbrace{JAWABAN}[/tex]

[tex]\small\boxed{\bold{a. \: (f \circ g) {}^{ - 1} (x) = \frac{x - 3}{6} }}[/tex]

------------------

[tex] \mathbb \color{orange} \underbrace{PENYELESAIAN}[/tex]

[tex] \underline{ \overline{ \boxed{ \bold{diketahui}}}}[/tex]

  • f(x) = 3x + 12
  • g(x) = 2x - 3

[tex] \\ \underline{ \overline{ \boxed{ \bold{ditanya}}}}[/tex]

  • [tex] [/tex](f ∘ g)[tex]{}^{ - 1} [/tex]

[tex] \\ \underline{ \overline{ \boxed{ \bold{jawab}}}}[/tex]

[tex] {\sf \bf \small{ = >} \underline{ \textsf{\textbf{menentukan (f ∘ g)(x)}}}} : [/tex]

[tex] \begin{aligned} \sf (f \circ g)(x) &= \sf f(g(x)) \\ &= \sf f(2x - 3) \\ &= \sf 3(2x - 3) + 12 \\ &= \sf 6x - 9 + 12 \\ &= \sf \bold{6x + 3}\end{aligned} \\ [/tex]

[tex] {\sf \bf \small{ = >} \underline{ \textsf{\textbf{menentukan (f ∘ g)}} {}^{ - 1}\textsf{\textbf{(x)}}}} : [/tex]

[tex] \begin{aligned} \sf y &= \sf 6x + 3 \\ \sf 6x &= \sf y - 3 \\ \sf x &= \sf \frac{y - 3}{6} \end{aligned}[/tex]

[tex] \small\boxed{\bold{ (f \circ g) {}^{ - 1} (x) = \frac{x - 3}{6} }}[/tex]

------------------

[tex] \mathbb \color{red} \underbrace{KESIMPULAN}[/tex]

[tex] \sf Jadi, nilai \: \bold{ (f \circ g) {}^{ - 1}(x) } \: adalah \: \bold{ \frac{x - 3}{6} }[/tex]

[tex] \colorbox{ff0000}{} \colorbox{ff4000}{}\colorbox{ff8000}{}\colorbox{ffc000}{}\colorbox{ffff00}{}\colorbox{c0ff00}{}\colorbox{80ff00}{}\colorbox{40ff00}{}\colorbox{00ff00}{}\colorbox{00ff40}{}\colorbox{00ff80}{}\colorbox{00ffc0}{}\colorbox{00ffff}{}\colorbox{00c0ff}{}\colorbox{0080ff}{}\colorbox{0040ff}{}\colorbox{0000ff}{}\colorbox{4000ff}{}\colorbox{8000ff}{}\colorbox{c000ff}{}\colorbox{ff00ff}{}\colorbox{ff00c0}{}\colorbox{ff00a0}{}\colorbox{ff0080}{}\colorbox{ff0040}{} [/tex]

[answer.2.content]